

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>

Session 2006

E4 - Physique, Chimie, Céramurgie

U42 – Travaux pratiques de caractérisation des matériaux : Partie A

Durée : 1 heure 30 Coefficient : 1

SUJETS -1-

Rhéométrie: rhéomat Rotovisco 1

Résistance mécanique à la flexion 3 points

Dilatométrie : dilatomètre ADAMEL

Granulométrie : granulomètre laser

Mesure de la surface spécifique : perméabilimètre de Blaine

Session 2006

E4 – Physique, Chimie, Céramurgie

U42 – Travaux pratiques de caractérisation des matériaux : Partie A

Durée : 1 heure 30

Coefficient: 1

SUJETS -2-

Rhéométrie: rhéomat Physica

Thermogravimétrie

Dilatométrie : dilatomètre Netzsch

Colorimétrie

Granulométrie : pipette d'Andréasen

E4 – Physique, Chimie, Céramurgie U42 – Travaux pratiques de caractérisation des matériaux : Partie A

Fiche évaluation partie pratique

NOM :	Prénom :	Sujet :

	Barème	Note	Commentaires
SITUER LE CONTRÔLE DANS LE PROCESSUS	1,5		
 METTRE EN ŒUVRE les informations contenues dans les documents remis sont 	1		
correctement exploitées - paramètres de procédure	1		
- réalisation du contrôle	5		
RENDRE COMPTE	1,5		
le procès verbal d'essai rapporte avec clarté et exactitude * les différentes mesures * les résultats obtenus * les conclusions : la synthèse des résultats est effectuée.			
NOTE GLOBALE	10		

Session 2006

E4 - Physique, Chimie, Céramurgie

U42 - Travaux pratiques de caractérisation des matériaux : Partie B

Durée : 1 heure 30 Coefficient : 1

CALORIMÉTRIE

I) Détermination de la capacité thermique μ du calorimètre :

- 1. Peser le calorimètre et ses accessoires. m₀ =
- 2. Verser dans ce calorimètre un volume V d'eau froide d'environ 200 mL. Déterminer avec précision la masse d'eau introduite. m_1 = et relever la température d'équilibre de ce système. θ_1 =
- 3. Verser maintenant environ 150 mL d'eau préalablement chauffée avec un chauffe-ballon. Relever la température de l'eau chaude avant introduction dans le calorimètre. θ_2 =
- 4. Mesurer avec précision la masse d'eau chaude introduite. m₂ =
- 5. Relever la température du système à l'équilibre. θ_3 =
- 6. Écrire l'équation calorimétrique. En déduire l'expression de la capacité calorifique du calorimètre, puis sa valeur numérique.

Donnée : $c_{eau} = 4,18 \text{ J.g}^{-1}.\text{K}^{-1}$.

Dans la suite, on prendra pour μ : 140 USI (unité à préciser).

II) Détermination de la capacité thermique massique du fer :

- Placer dans le calorimètre environ 300 mL d'eau froide. Déterminer avec précision la masse d'eau introduite. M₁ =
- 2. Relever la température d'équilibre de ce système : θ_4 =
- 3. Peser le cylindre de fer sur la balance électronique. M₂ =
- 4. Faire bouillir de l'eau (θ_5 =) dans un récipient en inox où on place également le cylindre de fer suspendu.
- 5. Retirer le cylindre, le placer dans le calorimètre et relever la température d'équilibre thermique. θ_6 =
- 6. Écrire l'équation calorimétrique. En déduire l'expression puis la valeur numérique de la capacité thermique massique du fer.

Session 2006

E4 - Physique, Chimie, Céramurgie

U42 – Travaux pratiques de caractérisation des matériaux : Partie B

Fiche évaluation : Calorimétrie

MANIPULATION		
Partie 1 : Masse du calorimètre	1,5	
Relevé des températures : température eau froide, chaude, équilibre	2,5	
Rapidité d'action – Assurance - Agitation		
Masse d'eau froide et d'eau chaude introduites	2	
Partie 2 : Masse d'eau froide + Masse laiton	1,5	
Relevé des températures : température eau froide, laiton, équilibre	3,5	
(Pas de contact du laiton avec le vase inox, transfert rapide du laiton dans le		
calorimètre, agitation)		
EXPLOITATION ET QUESTIONS		
Équation calorimétrique pour détermination de μ	2,5	
Expression et calcul de μ	2	
Équation calorimétrique pour le laiton	2,5	
Calcul de la capacité thermique massique du laiton	2	
TOTAL	20	

BREVET DE TECHNICIEN SUPERIEUR

INDUSTRIES CÉRAMIQUES

Session 2006

E4 - Physique, Chimie, Céramurgie

U42 – Travaux pratiques de caractérisation des matériaux : Partie B

Durée : 1 heure 30 Coefficient : 1

Dosage des ions Fe²⁺ par potentiométrie puis par manganimétrie

A. Généralités

- 1) Écrire la demi-équation électronique associée au couple Hg₂Cl_{2(s)}/Hg_(l) (couple mis en jeu dans l'ECS).
- 2) Écrire la relation de Nernst à 25°C pour le couple cité ci-dessus. Le potentiel standard redox à 25°C est E⁰(Hg₂Cl₂/Hg)=0,244 V.
- 3) Calculer la valeur de ce potentiel si la concentration des ions Cl⁻ est de 0,1 mol.L⁻¹.

B. Dosage des ions Fe²⁺

1. Par potentiométrie avec les ions Ce⁴⁺

Dans le dosage potentiométrique à réaliser, on utilisera, comme électrode indicatrice, une électrode de platine (inattaquable) et comme électrode de référence, une électrode au calomel saturé notée ECS (0,244 V à25°C).

On prélèvera un volume de 100 mL d'une solution contenant des ions Fe²⁺ de concentration inconnue C₁ de pH=2. La solution titrante sera une solution de sulfate de cérium à 0,01 mol.L⁻¹ et de pH=0. On suivra l'évolution de la f.e.m E de la pile réalisée en fonction du volume V de solution titrante versé.

- Tracer sur Regressi E=f(V).
- Par la méthode des tangentes, déterminer le volume équivalent V₁.

2. Par colorimétrie avec les ions permanganates MnO₄-.

Dans un bécher, on placera un volume de 20 mL de la solution contenant les ions Fe²⁺ et on utilisera comme solution titrante une solution de permanganate de potassium de concentration molaire égale à 5,0.10⁻² mol.L⁻¹.

Afin d'obtenir cette solution titrante vous devrez la préparer à partir d'une solution mère de permanganate de potassium de concentration molaire égale à 0,1 mol.L⁻¹.

Relever le volume équivalent V₂.

C. Exploitation des résultats et questions

1. Dosage potentiométrique

- 1) Érire les demi-équations électroniques des couples mis en jeu dans ce dosage sachant que $E^0(Ce^{4+}/Ce^{3+})=1,44 \text{ V } (H_2SO_4 à 1 \text{ mol.L}^{-1})$ et $E^0(Fe^{3+}/Fe^{2+})=0,67 \text{ V }$ puis l'équation-bilan du dosage.
- 2) Calculer la constante d'équilibre de cette réaction en partant des potentiels standards et de la relation de Nernst.
- 3) À l'équivalence, donner la relation existant entre la quantité d'ions Fe²⁺ initialement présente et la quantité d'ions Ce⁴⁺ versée.
- 4) En déduire la concentration des ions Fe²⁺ dans la solution titrée.
- 5) Proposer une méthode visant à déterminer graphiquement la valeur des potentiels standards des deux couples mis en jeu.

2. Dosage colorimétrique

- 1) Déterminer le nombre d'oxydation de l'élément manganèse Mn dans l'ion permanganate.
- 2) Donner la demi-équation électronique du couple MnO_4^{-1}/Mn^{2+} puis l'équation-bilan du dosage sachant que $E^0(MnO_4^{-1}/Mn^{2+})=1,51 \text{ V}$.
- 3) En déduire la relation à l'équivalence entre la quantité d'ions Fe²⁺ initialement présente et la quantité d'ions MnO₄ versée.
- 4) En déduire la concentration des ions Fe²⁺ dans la solution titrée.

Session 2006

E4 - Physique, Chimie, Céramurgie

U42 – Travaux pratiques de caractérisation des matériaux : Partie B Fiche évaluation : Dosage des ions Fe²⁺

Manipulation		
	Note max	Note élève
Potentiométrie		
Réalisation du montage + ECS + Pt + voltmètre	1	
Prélèvement des 100 ml. + remplissage burette	1	
Repérage du saut de tension	1	
Manganimétrie		
DILUTION AU 1/5	2	
Rinçage + préparation burette	1	
Repérage de l'équivalence à la goutte près	1	
TOTAL	7	
EXPLOITATION ET QUESTION Potention étrie	ONS	
½ Equation du couple Hg ₂ Cl ₂ /Hg	1	
Relation de Nemst + calcul à 0,1 M	1,5	
Tracé de la courte E-FAA + méthode des tengentes	1,5	
1/2 Equation des couples Ce ⁴⁺ /Ce ³⁺ et Fe ³⁺ /Fe ²⁺	1,,,	
Equation bilan + constante d'équilibre	1,5	
A l'équivalence relation entre Ce ⁴⁺ et Fe ²⁺	0,5	
Calcul de la concentration de Fe ²⁺	1	
Méthode de détermination des E ⁰	1,5	
Manganimétrie		
Nombre d'oxydation de Mn dans MnO ₄	0,5	
½ Equation MnO ₄ 7/Mn ²⁺	1	
Relation à l'équivalence entre MnO ₄ et Fe ²⁺	1	
Calcul de la concentration de Fe ²⁺	1	
	,	
TOTAL	20	

BREVET DE TECHNICIEN SUPERIEUR

INDUSTRIES CÉRAMIQUES

Session 2006

E4 – Physique, Chimie, Céramurgie

U42 – Travaux pratiques de caractérisation des matériaux : Partie B

Durée : 1 heure 30 Coefficient :1

Titrage par différence

A. Généralités

On souhaite doser un mélange contenant de l'acide chlorhydrique HCl (acide fort) de concentration C_1 et de l'acide sulfurique H_2SO_4 (diacide fort). Pour cela, on effectuera un premier dosage du mélange avec de l'hydroxyde de sodium en présence d'indicateur coloré acido-basique : le bleu de bromothymol (le virage correspond au passage du jaune au bleu). Le deuxième dosage consiste à doser par une solution de nitrate d'argent les ions chlorure Cl⁻ provenant de l'acide chlorhydrique en utilisant une solution de chromate de potassium (2 K⁺ + CrO_4^{2-}) : l'équivalence est obtenue lorsque l'on voit apparaître un précipité rouge de chromate d'argent Ag_2CrO_4 .

- a) Donner la définition d'un acide selon Brönsted.
- b) Écrire la réaction totale de dissociation de HCI dans l'eau.
- c) Écrire la réaction totale de dissociation de H₂SO₄ dans l'eau.

B. Protocole expérimental

- Dosage acido-basique en présence d'un indicateur coloré.
- Prélever un volume V=20 mL du mélange et y ajouter quelques gouttes de bleu de bromothymol afin que la solution prenne une couleur jaune.
- Remplir la burette graduée d'hydroxyde de sodium (Na⁺ + OH⁻) de concentration C_b=1,0.10⁻² mol.L⁻¹. Afin d'obtenir cette solution titrante, il sera nécessaire de procéder à une dilution à partir de la solution mère d'hydroxyde de sodium de concentration molaire égale à 5,0.10⁻² mol.L⁻¹.
- Effectuer le dosage et relever le volume équivalent que l'on notera Ve₁.
- a) Écrire la réaction de ce dosage acido-basique.
- b) Montrer qu'à l'équivalence on a la relation C₁.V + 2 C₂.V = C_b.V_{e1}.

IQE4TP

Page 1 sur 2

Dosage par précipitation selon la méthode de Mohr

- Prélever un volume V=20 mL du mélange et y ajouter 2 mL de chromate de potassium à 50 g.L⁻¹
 (2K⁺ + CrO₄²⁻)
- Remplir la burette graduée par une solution de nitrate d'argent de concentration 0,01 mol.L⁻¹. L'équivalence est obtenue lorsqu'un précipité rouge apparaît. On notera le volume équivalent Ve₂.
- a) Écrire les deux réactions mises en jeu dans ce dosage.
- b) Trouver la relation à l'équivalence entre la quantité d'ions Cl⁻ présents dans le mélange n(Cl⁻) et la quantité d'ions Ag⁺ versée n(Ag⁺).
- c) Calculer la concentration des ions Cl⁻ présents dans le mélange. En déduire la concentration C₁ d'acide chlorhydrique.

C. Exploitations des résultats

- Connaissant maintenant la concentration de l'acide chlorhydrique dans le mélange, en déduire la concentration de l'acide sulfurique.
- 2) Exprimer le produit de solubilité du chlorure d'argent ainsi que celui de chromate d'argent avec leurs réactions associées.
- 3) Calculer la concentration molaire de la solution de chromate de potassium $(2K^{+} + CrO_{4}^{2-})$ à 50 g.L⁻¹ sachant que M(K)=39 g.mol⁻¹; M(Cr)=52 g.mol⁻¹; M(O)=16 g.mol⁻¹.
- 4) Calculer la concentration des ions CrO₄²⁻ dans le mélange à l'équivalence (on considère que la fraction des ions chromates consommés par la réaction de précipitation est négligeable).
- 5) Calculer la concentration des ions Cl' restants lorsque l'on voit apparaître le précipité de chromate d'argent à l'équivalence.

Données: Ks(AgCl)=1,8.10⁻¹⁰; Ks(Ag₂CrO₄)=1,9.10⁻¹².

Session 2006

E4 - Physique, Chimie, Céramurgie

U42 – Travaux pratiques de caractérisation des matériaux : Partie B

Fiche évaluation : Titrage par différence

Manipulation		
Dosage acido-basique	Note	Note
	max	élève
Prélèvement des 20 mL : Utilisation pipette jaugée ainsi que de la propipette	1	
Utilisation de la burette graduée : Lecture burette, mise à zéro bien effectuée	, 1	
rinçage burette		
Appréciation du virage à l'équivalence : mesure précise (goutte à goutte)	1,5	
Dosage par précipitation (méthode de Mohr)		
Préparation du mélange à titrer (20 mL du mélange + 2 mL de chromate de potassium)	1,5	
Appréciation du virage à l'équivalence (Changement de couleur)	1	
Propreté et rangement	1	
TOTAL	7	
EXPLOITATION ET QUESTIONS		
Définition de l'acide	1	
Réaction totale de dissociation de HCI	1	
Réaction totale de dissociation de H ₂ SO ₄ .		
Ecriture de la réaction du dosage acido-basique	1	
Démonstration de la relation $C_1.V + 2 C_2.V = C_b.V_{e1}$.	1	
Ecriture des 2 réactions mis en jeu dans le dosage par précipitation	1,5	
Relation à l'équivalence entre Cl⁻ et Ag ⁺ .	1	
Concentration des ions Cl ⁻ ainsi que C ₁ .	1	
Concentration de l'acide sulfurique C ₂ .	1	
Produit de solubilité de AgCl et Ag₂CrO₄.	1	
Calcul de la concentration molaire de la solution de chromate de potassium	1	
Calcul de [CrO ₄ ²] à l'équivalence	1	
Concentration des ions Cl [*] restants à la fin du dosage	1,5	
TOTAL	20	

BREVET DE TECHNICIEN SUPERIEUR

INDUSTRIES CÉRAMIQUES

Session 2006

E4 – Physique, Chimie, Céramurgie

U42 – Travaux pratiques de caractérisation des matériaux : Partie B

Coefficient: 1 Durée: 1 heure 30

Mesure des duretés totales, calciques et magnésiques d'une eau

Généralités A.

La dureté totale de l'eau est donnée par la concentration totale en ions Ca²⁺ et Mg²⁺. Elle s'exprime en degrés hydrotimétriques °TH (en France).

Une dureté totale égale à 1°TH correspond à une concentration en ions égale à 10⁻⁴ mol.L⁻¹ c'est-à-dire à 4,0 mg.L⁻¹ d'ions Ca²⁺ ou à 2,4 mg.L⁻¹ d'ions Mg²⁺.

Principe du dosage

1. Dureté totale :

L'acide éthylène diamine tétraacétate noté H₄Y possède 4 constantes d'acidité successives :

 $pKa_2=2.7$ $pKa_3=6,2$ pKa₄=10,3 pKa₁=2,0

réalise avec de nombreux ions métalliques comme Ca²⁺ et Mg²⁺ des complexes :

Ca²⁺ + Y⁴⁻ CaY²⁻ Kf=10^{10,7}.

 MgY^2 Kf=10^{8,7}. $Mg^{2+} + Y^{4-} -$

L'indicateur de fin de réaction est le noir ériochrome (N.E.T).

Il s'ionise dans l'eau en donnant une couleur rouge en présence d'ions Mg²⁺ et Ca²⁺, due aux complexes qu'il forme avec ces ions.

Ca²⁺ et Mg²⁺ se complexent cependant préférentiellement avec l'EDTA. Quand on verse de l'EDTA dans une solution contenant des complexes de Mg2+ et Ca2+ avec le N.E.T., ces derniers disparaissent au profit des complexes avec l'EDTA. A l'équivalence les complexes avec le N.E.T. ont donc disparu et la solution devient bleue.

2. Dureté calcique :

On ajoute à l'eau quelques grains de calcon de façon à obtenir, après agitation, une solution de couleur bordeaux. À l'équivalence on observe un virage au bleu.

C. Protocole expérimental

On dosera l'eau de Volvic.

1. Dureté totale DT

- Pour le dosage de l'eau de Volvic on utilisera une solution d'EDTA de concentration molaire C'=10⁻³ mol.L⁻¹ préparée par dilution d'une solution d'EDTA de concentration C=1,0.10⁻² mol.L⁻¹.
- Le volume d'eau à prélever pour le dosage est V₁= 20 mL.
- Ajouter 2 à 3 mL de solution tampon à pH=10.
- Verser quelques grains de NET afin d'obtenir une couleur persistante.
- Effectuer le dosage et s'assurer à l'équivalence, que le virage du NET persiste. Noter le volume V2 d'EDTA versé à l'équivalence.

2. Dureté totale calcique

Pour doser uniquement les ions Ca²⁺, il faut précipiter les ions Mg²⁺ et cela nécessite un pH=12. Dans 20 mL d'eau, on ajoute donc 2 à 3 mL d'hydroxyde de sodium de concentration molaire ainsi que quelques grains de calcon (indicateur coloré). La solution titrante est l'EDTA à 1.10⁻³ mol.L⁻¹ utilisée dans la manipulation précédente.

On repère le volume équivalent V₂.

D) Exploitation:

1. Dureté totale

L'EDTA est un tétraacide noté H₄Y ayant les pKa suivants : 2,0 ; 2,7 ; 6,2 ; 10,3.

- a. Établir les domaines de prédominance de l'EDTA en fonction du pH.
- b. L'équation bilan du dosage est :

$$Ca^{2+} + Y^{4-} \longrightarrow CaY^{2-}$$

$$Mg^{2+} + Y^{4-} \longrightarrow MgY^{2-}$$

- c. Donner la relation existant entre les quantités d'ions Ca²⁺ et Mg²⁺ et celle en Y⁴⁻ à l'équivalence.
- d. Calculer la dureté totale de l'eau en degré TH.

3. <u>Duretés calcique et magnésique</u>

- a. Écrire l'équation du dosage du C.2.
- b. Calculer le pH de début de précipitation pour Ca(OH)₂ et pour Mg(OH)₂. Expliquer alors pourquoi on se place à pH = 12.

<u>Données</u>: pKs(Ca(OH)₂)=5,2; pKs(Mg(OH)₂)=10,7; pKe=14 à 25°C

- c. Calculer la concentration des ions Ca²⁺ dans l'eau.
- d. En déduire la dureté calcique ainsi que la dureté en magnésium.

4. Comparaison avec les données fournies sur la bouteille :

- a. Relever les titres massiques en Ca²⁺ et Mg²⁺ indiquées sur l'étiquette. En déduire les concentration molaires correspondantes, puis les duretés calciques, magnésiques et totales théoriques.
- b. Pour la dureté totale, calculer l'écart relatif du résultat expérimental par rapport à la donnée fournie au consommateur.
- c. Calculer les pH de début de précipitation des ions Ca²⁺ et Mg²⁺ en respectivement Ca(OH)₂ et Mg(OH)₂ à 25°C. Conclure sur la validité du dosage.

<u>Données</u>: masses molaires atomiques: M(Ca)=40 g.mol⁻¹; M(Mg)=24,3 g.mol⁻¹;

Session 2006 E4 – Physique, Chimie, Céramurgie

U42 - Travaux pratiques de caractérisation des matériaux : Partie B

Fiche évaluation : Mesure des duretés de l'eau

Manipulation		
	Note max	Note élève
Rinçage +remplissage burette	1	
Dilution au 1/10 ^e	2	
Ajout convenable de chaque indicateur	1×2	
Repérage de l'équivalence/ Changement de couleur	1	
Exploitation		
Dureté totale		
Domaines de prédominance	1	
Relation à l'équivalence	1	
Concentration molaire	1,5	
Titre massique	1	
Dureté totale	1	
Duretés calcique et magnésique		
Équation du dosage dureté calcique	0,5	
Calcul de concentration	1	
Dureté calcique	0,5	
Dureté magnésique par différence avec la dureté totale	1	
Comparaison avec l'étiquette		
Calcul des concentrations molaires	1	
Fitres correspondants	1,5	
Écart relatif dureté totale	1	
pH de début de précipitation + validité dosage	2	
TOTAL	20	